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Abstract—The thermal conductivity of a composite medium consisting of a conducting matrix and insu-

lating fibres is studied. The equivalent transverse conductivity of the composite as a function of the fibre

volume fraction is of interest. This is obtained in the present work by subjecting an inhomogeneous region

to both steady and steady-periodic temperature differences. The resulting set of equations is solved by a

finite element technique. Results show that a composite medium can be homogenized using statically
determined conductivities, even for unsteady problems.

INTRODUCTION

INHOMOGENEOUS materials are widely used in engin-
eering practice. They have found application in struc-
tural elements due to their high strength-to-weight
ratio. In several demanding applications such as air-
craft wings, satellites, cylinder blocks of IC engines,
etc., the composite structure is required to withstand
a large thermal loading as well. In some instances,
the components which make up the composite have
widely differing strengths as well as thermal con-
ductivities. Hence, while the strength is improved, the
equivalent conductivity of the composite deteriorates
to lower values. For a given heat flux, this can mean
higher temperatures in the structure and consequently
a lowering of the strength itself. Determination of the
effective conductivity of a composite forms the topic
of this paper.

A list of formulae useful in calculating thermal con-
ductivity of a fibre composite has been given by
Chawla [1]. Baker-Jarvis and Inguva [2] have studied
steady heat conduction in a region containing
inclusions, by modifying the Laplace equation to
account for the microstructure. Hatta and Taya [3]
have extended Eshelby’s equivalent inclusion method
in elasticity [4] to determine the effective conductivity
of a composite with highly conducting short fibres
randomly oriented within it. Parang et al. [5] have
studied heat conduction in a region which contains
coolant tubes normal to it.

The present work deals with heat conduction in a
region containing insulating fibres distributed uni-
formly within it. This configuration models a metal-
matrix composite with low conductivity fibres inserted
to improve its strength. It is of interest to determine
the extent to which the conductivity changes as a
function of the fibre volume fraction. This study is
restricted to transverse conductivity alone, since it is
clear that longitudinal conductivity is well modelled
by the rule of mixtures [1]. The problem of a com-

posite undergoing a transient heating process is also
studied here. There is no reason to expect that the
static effective conductivities would be applicable for
the unsteady problem, since the physical process in
each case is different.

Results obtained in this study are equally valid for
the important problem of ground water flow through
fractured rocks. This extension is possible by ident-
ifying temperature with pressure, conductivity with
permeability and thermal capacity with storage
capacity. The transient conduction problem discussed
in this paper also has applications in the hydro-
fracturing of oil-bearing rocks. However, the problem
formulation in this paper is in terms of temperature
alone.

FORMULATION

The geometry and the coordinate system considered
in this work are given in Fig. 1. The region is taken as
square, with a distribution of circular inhomogeneities
whose conductivity is approximated as zero. The
matrix conductivity is finite, and the conductivity of
the composite is normalized with respect to it. The
effective conductivity of a composite is defined as that
value for an equivalent homogeneous region, which,
for a given temperature drop, permits the same
amount of energy through it. Since the fibres and the
side walls are taken as insulating surfaces, the energy
supplied to the composite at x = 0 is equal to the
energy leaving it, at x = L, under steady conditions.
The transverse equivalent conductivity is then defined
as

T

ko = —La

oT
= ~L— i
x =0 ox L -L ®
averaged over y = 0—L and normalized with respect
to the matrix conductivity. For the unsteady problem,
part of the energy supplied at x = 0 is absorbed by
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A, B, C, D constants of integration in
equation (14)

F shape function

Fo  Fourier number, a/wl?

i /—1, imaginary unit

k equivalent thermal conductivity of a
composite medium in a generalized
transient problem, normalized by &,

ko equivalent thermal conductivity of a
composite medium at steady state,
normalized by k,,

ke thermal conductivity of the
inhomogeneities embedded in the
matrix

ko matrix thermal conductivity (also

characteristic conductivity)

components of the element stiffness

matrix arising in the FEM

L edge of the square region, normalized by
a typical size of the inclusion

NOB number of circular voids, or fibres

Re ( ),Im () real and imaginary parts of a
complex quantity

Kls K2

NOMENCLATURE

t time

At excess time required for a composite to
become conducting, over a
homogeneous region

temperature

complex temperature, T,+i7,

volume fraction of inclusions in matrix
, ¥ Cartesian coordinates.

< 8N

=

Greek symbols

o thermal diffusivity of matrix, kn/(pc,)m
) thermal boundary-layer thickness on the
heated edge

o nth eigenvalue in equation (18)

© @/

@ forcing frequency of thermal loading.
Other symbol

v gradient operator, (¢/Cx, ¢/0y).
Subscripts

i,j  ithrow, jth column element of matrix

x,y, t.n 8/6x, 8/8y, 0/ét, ¢/en, respectively.

the matrix to raise its temperature. Hence the energy
leaving the region at x = L is less than the energy
supplied. In applications such as the cylinder block of
an IC engine, it is of interest to determine the time
taken for the region to become conducting, i.e. for the
heat flux at x = L to be a significant portion of the
heat flux at x = 0. Hence, for transient problems stud-
ied in this work, we define

eT
k=—-L— )
ax x = L
averaged over y = 0-L. Clearly, for steady conduction
with no inhomogeneities, k, is unity. It is less than

Y
I“""" 7, %o

FiG. 1. Physical domain, coordinate system and boundary
condition.

Xzl

unity when the fibre volume fraction is non-zero and
for transient problems. Equations (1) and (2) are in
dimensionless form. The temperature T is normalized
by the imposed temperature difference across the com-
posite region. Factor L arises from the heat flux
expression for a homogeneous region of size L, subject
to a unit temperature drop (=k,,/L). Steady heat con-
duction is governed by the Laplace equation

VT =T, +T,, = 0in the matrix 3
with the boundary conditions
x=0, T=1
x=L, T=20
y=0,L, T =0. (4)

On all fibre surfaces, T, = 0, where » is the unit out-
ward drawn normal on these surfaces. This is based
on the assumption that the fibre conductivity is very
small compared to the matrix conductivity. The insu-
lated side wall boundary conditions at y =0 and L
may be interpreted as symmetry conditions in a large
composite, which has a repeating pattern of fibre dis-
tribution normal to the mean temperature gradient.
The unsteady problem is governed by

1
ViTr=-T, (5)
x

the boundary conditions given by equation (4) and
an initial condition

t =0, T =0inthe matrix. (6)
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In equation (5), a is the thermal diffusivity in the
matrix.

For the transient problem, the application of equa-
tion (2) leads to an effective conductivity whose
dependence on time changes with the choice of the
initial conditions. To keep the analysis general, the
temperature difference across the composite is taken
as

T(x =0)—T(x = L) =& 9

and dynamic steady state is allowed to be reached.
Then the local temperature is expressed as

T(x,y,0) = Te (8a)

where

T = T,(x,y,®) +iTi(x, 5, ®) (8b)

and i is the imaginary unit. The determination of T
is now reduced to the computation of the complex
temperature 7. This process of moving from the time
domain to the frequency domain can be interpreted
as a Laplace transform. Specific solutions of transient
problems can be obtained by inverting this transform.
This is usually performed by numerical methods.

The time taken to reach dynamic steady state is not
relevant if the analysis given below is employed to
construct the inverse Laplace transform. However,
the dynamic steady state may be of direct interest in
some applications. The time taken to reach this steady
state depends on 9, the thickness of the thermal
boundary layer. As shown later in this paper (equa-
tion (20)), the penetration depth L is related to the
largest frequency which can cover this distance as
@ ~ 1/L% Hence large frequencies would cover small
distances and reach steady state rapidly.

The real and imaginary components of complex
temperature 7 can be interpreted as follows. Since the
physical temperature T is

T = Re [T ]
= T, cos wt— T, sin wt

and T, =0 at x =0, T, is the in-phase part of the
temperature relative to the imposed overall tem-
perature difference and 7; the out-of-phase part.

Equations (8), introduced in equation (5) with the
boundary conditions, give rise to the following
problem, in terms of 7} and T;:

VT. 40T, =0
VT —ol, =0 )]
where w = /2. The boundary conditions are
x=0, T,=1, T;=0

x=L, T,=0, T;=0 (10)

and the normal gradients T, and T}, = 0 on all other
boundaries. Equations (9) are coupled and have to be
solved simultaneously. The equivalent conductivity is
a complex quantity defined as
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k(w) = —-L[-é-; +igs (1)

- L
Its real and imaginary parts must both be fully deter-
mined to calculate the transient temperature dis-
tribution through a Laplace inversion process.

The void fraction (i.e. the fraction of fibres in a
composite, or the percentage contact area in a rock
fracture) ranges from 0 to 20% in this work.

METHOD OF SOLUTION

Equations (3) and (4) and (9) and (10) have been
solved by a Galerkin finite element method using six-
noded isoparametric elements [6]. At each node, we
solve for both T, and T, The circular shape of the
inhomogeneities is exactly represented in the calcu-
lation. The element matrix structure here is of the

form
[ K} wucz]][r,] —0
—ofK;] K] T;

where K\;; = | (F Fye+ F,.F),) dQ, K, = [ F.F;dQand
i, j = 1-6. [K,] arises from Galerkin integration of the
terms V2T, and V*T; in equation (9). [K;] arises from
the coupling terms 7, and 7, in equation (9). Matrix
inversion is accomplished by a sparse matrix solver
[7]. While solving equation (9), the matrix formed by
the FEM becomes increasingly unsymmetric for large
values of w. It is also ill conditioned due to the large
off-diagonal terms. Fortunately, Jk(w)] =0 as w —
o, and the calculation can be terminated at a finite
forcing frequency. For large w, the solution of equa-
tion (9) is T, =T, = 0 in the bulk of the solid. The
mean temperature field then fails to satisfy the bound-
ary condition at x = 0. Matrix ill-conditioning signals
this change in physical phenomena in the region being
studied.

The finite element code has been well tested for both
the steady and steady-periodic problems. Analytical
solutions are possible for a homogeneous material.
The computer program has been tested by repro-
ducing results given by Ouzisik [8] for a steady tem-
perature difference, and a variety of side wall
conditions. For the time periodic problem, equation
(9) can be combined to form

12

VVIT, +0®T, =0 (13a)
with the boundary conditions
x=0, T.,=1, (T)n=0
x=L, T,=0, (T,),,=0. (13b)

This system of equations, in one dimension, has an
analytical solution

T,=Ae*sincx+Be “sincx
+Ce*coscx+De *coscx (14)

where 4, B, C and D are integration constants to be
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obtained from equation (13b), and ¢ = \/(w/2). The
results of the finite element code match this solution
within 1%.

The number of elements is so chosen that each fibre
surface is represented by 16 nodes. This ensures that
the energy balance between inlet and exit (x = 0 and
L) is within 0.01% for the steady problem. The same
discretization has also been used for the unsteady
problem.

A region size of L = 6 has been used in the present
work. The fibre diameter is of order unity. The effec-
tive conductivity of the composite under static thermal
loading conditions is insensitive to the choice of L,
and depends primarily on the fibre volume fraction.
This is discussed further in the next section. Under
dynamic loading conditions, the conductivity is a
strong function of L. This is because, at each value of
o, a thermal boundary-layer is formed, whose thick-
ness is §(w). If 5 < L, the conductivity, defined in this
study at the energy exit plane, is zero. It becomes non-
zero only for values of & > L. The frequency cor-
responding to 6 = L is hence a critical value, in the
sense that @ < w,, makes the composite conducting,
and o > w, makes it insulating. This observation has
strong implications in the cooling of IC engines. Sup-
pose the thickness of the cylinder block is greater than
d(w), where w is now the frequency of combustion.
Then, no amount of cooling from outside would be
of use, since the block is an insulator at that frequency.

Even though k is a function of both w and L,
dimensional analysis shows that it can be made a
unique function of the Fourier number, Fo = 1/
wL? = a/d L% Hence, the results presented here for
L = 6 can be extended to any combination of L and
w, by keeping Fo invariant. For a composite, & is also
a function of geometry and the scaling (i.e. wL?) is
not necessarily valid. However, extensive numerical
experiments have confirmed that &k is a unique func-
tion of Fo, and it is sufficient to perform calculations
for a single value of L. It will be shown in the next
section (Fig. 5) that for both the matrix and the
composite, k/k, is a unique function of the Fourier
number

(15)

Here k, is the equivalent conductivity determined
under static conditions.

RESULTS

Figure 2 shows a plot of the static equivalent con-
ductivity k, as a function of the fibre volume fraction.
Since the fibres are taken as non-conducting, they may
as well be thought of as voids distributed in the matrix.
The FEM result obtained in this study has been com-
pared to the rule of mixtures

ko= Vi +(1—V)k; (16)
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FiG. 2. Plot of static equivalent conductivity as a function
of void fraction.

where V is the void fraction and subscripts m and f
refer to matrix and fibre, respectively. In this work,
ke = 0. FEM results have also been compared to the
empirical correlation for transverse conductivity
[1,9]:

/v
ko = (1= V)kn+ ———k"‘—v~r
e

Equation (16) is appropriate for longitudinal con-
ductivity, where the fibres are aligned with the direc-
tion of the mean temperature gradient. It overpredicts
transverse conductivity, and is generalily not valid for
this problem. Figure 2 also shows that the correlation
given in equation (17) underpredicts conductivity with
respect to the numerically computed values. In par-
ticular, it is very inaccurate for low void fractions,
since it shows a very sharp drop in conductivity for
V < 5%. Its validity for a large void fraction (greater
than 20%) has not been tested against the FEM. This
is because the computer memory required to solve
such problems is found to be excessive. The best line
fit through the numerical data is found to be

ko=1-1.63V (18)

for 0 < ¥V <0.2. It predicts zero conductivity for
¥V > 0.61. For such a large proportion of inhomo-
geneity, it is inappropriate to use a continuum model
to determine equivalent properties. The behavior of
the composite would be a strong function of the pat-
tern of distribution of the voids (or fibres, or contact
areas, as the case may be). The value of k may fluctuate
between zero and finite values. The global response of
the composite medium can then be characterized only
as a statistical average. This is an entirely different
problem and is not addressed here.

The effective conductivity of the composite is a
function of the pattern of distribution of voids in the
matrix. Figure 3 shows the variation in k, as a function
of this pattern, for fixed values of void percentage.
The patterns used are summarized in Table 1. In Fig.
3, NOB refers to the number of circular voids in the

amn
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T T T T
© NOB=3, 147% Void
NOB= 2, I7.5 % Void -

Ko ° 2 ° °
07+ . L
L ]
J— N i S 1 1
0.5 | 3 4
Pattern

Fi1G. 3. Plot of static equivalent conductivity as a function
of pattern of distribution of voids.

region of interest. The standard deviation of k, from
its mean value is within 4.3% for both void fractions
shown. This mean value has been plotted in Fig. 2 as
representative of equivalent conductivity for a given
void fraction. The equivalent conductivity is seen to
be only weakly dependent on the pattern of dis-
tribution of the inhomogeneities, and is primarily a
function of their proportion in the conducting zone.

Figure 4 shows a plot of the static equivalent con-
ductivity as a function of fineness of distribution of
the voids, for a given total void fraction (=19% in
this figure). For a given size of void, the two patterns
which produce extreme conductivities are_also dis-
played in the figure. The scatter is seen to reduce as
the size of the void reduces and its number increases
to keep the void fraction constant. Hence, it may be
concluded that both a fine distribution of inhomo-
geneities and a coarse one will give rise to nearly the
same conductivities,

Figure 5 is a plot of the real part of dynamic equi-
valent conductivity as a function of forcing frequency
o. The conductivity is normalized by its static value
ko. Curves for both void fractions of 0 and 20% have
been plotted. The negative values of Re [£] for a
certain range of frequencies should come as no
surprise, because k is defined as the dimensionless
temperature gradient at the exit plane. Since the inlet
temperature (at x = 0) fluctuates between +1 and
—1, and the exit temperature is zero, this gradient is
allowed to change sign. The curve for a void fraction
of 0% can also be obtained analytically from equation
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F1G. 4. Plot of static equivalent conductivity as a function
of fineness of distribution of voids.

(14). The comparison between the FEM result shown
in Fig. 5 and that obtained from equation (14) is
found to be quite good.

With k normalized by the static conductivity k,, it
is seen in Fig. 5 that the curves Re [k/k,] = f(w) for
each void fraction (0 and 20%) nearly overlap each
other. It will be assumed here that these curves are in
fact identical. Figure 6 shows that the plot of
Im [k/ko} = f-() is also nearly unique, independent of
the void fraction. Plots of Re [k] and Im [k] for other
void fractions between 0 and 20% confirm this trend.
Since the steady-periodic problem is a building block
for any transient problem (and hence is a generalized
transient problem, away from initial conditions), the
following conclusion can be arrived at. The exit tem-
perature gradient in a general two-dimensional tran-
sient heat conduction problem with inhomogeneities
can be obtained from a one-dimensional transient
problem by multiplying the frequency-dependent
matrix conductivity by the static equivalent con-
ductivity k. The exception to this rule occurs when a
homogeneous region has a two-dimensional tem-
perature field due to boundary conditions. This case
is not studied here.

The implication of the observation given above is
the following. To compute the quantity 87/dx|, .., at
various instants of time, and to determine the time
taken by a composite region to become conducting,
the full problem T, + T,, = 1/aT, can be simplified to
T,. = 1/aT,. The one-dimensional transient problem
has an analytical solution for the following choice of
initial and boundary conditions :

Table 1. Distribution of centres of voids in matrix used in Fig. 3

NOB =2 NOB=13
Radius = 1 Radius = 0.75
Pattern x y X y x y x y x y
1 30 15 30 45 15 15 15 45 45 30
2 L5 30 45 30 1.5 30 45 15 45 45
3 1.5 45 45 15 30 45 15 15 45 1.5
4 1.5 15 45 45 30 LS 15 45 45 45
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FiG. 5. Real part of dynamic equivalent conductivity nor-
malized by k,, plotted as a function of the forcing frequency.

X = =1 t>0
x=L T=0, t>0
t = —0, Osst.

This solution is
—-1/13!

X 22
T(x,t)=<l—%)—zngl T

where A, =nn/L. The dimensionless temperature
gradient at the exit plane (x = L) of the homo-
geneous region is

sin 4,x  (19a)

k()= —1+2 z (__l)n+l e—zl:l'

n=1

(19b)

For a composite region, generalized transient analysis
shows that

MO o 1423 (mprten i (90)
kO n=1|

The time taken by a region with a distribution of voids

to become conducting to various extents (5%, 25%,

etc.) can be calculated from equation (19¢).

T T T
— Void 0O %
Void 20 %

L=6

FIG. 6. Imaginary part of dynamic equivalent conductivity
normalized by k., plotted as a function of forcing frequency.
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From Figs. 5 and 6. it is clear that the dynamic
conductivity is reduced to a small magnitude for
w > 3, when L = 6. This corresponds to a Fourier
number of

Fo o L | _ 1
=B T Wl T 108

aL?

Hence, the cut-off frequency for any other region size,
homogeneous or otherwise, can be calculated from

108x

- (20)

Weytoft =

This relationship has application in the design of cyl-
inder blocks for IC engines, which are subject to ther-
mal cyclic loading. For a loading frequency greater
than the cut-off value given by equation (20), the mean
energy conducted through the material drops to zero.
The cylinder block will then have to be cooled by
having coolant channels in its interior.

Figure 7 is a plot of the dimensionless time taken
by a composite region to become conducting as a
function of the void percentage, obtained from equa-
tion (19). This time is independent of the length L,
being defined as an’t/L?, where z is the matrix diffu-
sivity and ¢ is the real time. The numbers shown in
the graph (5%, 25% etc.) refer to the criteria used to
determine whether the piece is conducting or not. For
example, with a 5% criterion, this time is what is
required for k/k, to be just equal to 0.05, starting from
a zero value. For a 5% criterion, a composite region
with 20% inhomogeneities takes 42% longer to
become conducting, relative to a uniform matrix
alone. This figure is 42% for the 95% criterion as well.
Hence, the excess time taken by a material to become
conducting is independent of the criterion used and is
a unique function of the void fraction. This obser-
vation has been tested for all void percentages,
between 0 and 20%, and has been found to be valid.
The plot of this excess time At versus the void fraction
V is shown in Fig. 8.

T T °
5r o 95%]
[=]
L ° i
P
tC
50%
2t . o -
. o 25%
d o ° °
5 ° -
> 3 * * 5
5%
1 1
o] 8 16
% Void

FiG. 7. Plot of time taken for a composite to become con-
ducting as a function of the void fraction.
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40 1

% at

-

% Void

FiG. 8. Plot of excess time taken by a composite to become
conducting over a homogeneous region, as a function of the
void fraction.

CONCLUSIONS

The following are the conclusions arrived at in this
work.

1. The static equivalent conductivity of a composite
region is primarily a function of the percentage of
inhomogeneities. It depends weakly on the pattern of
distribution and fineness of their size. Based on Fig.
2, the best fit line through the numerical data is

ko=1-163¥V, 0V <0.2

2. The real and imaginary parts of the equivalent
conductivity, calculated at the exit plane of a square
composite region of length L, have the following prop-
erties.

(i) Re [k/ky) and Im [k/k,] have a unique value
corresponding to the dimensionless parameter, o/wL>.

(ii) They reduce to zero for a/wL* < 1/108.

(iii) In view of conclusion 2(i), the calculation of
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the transient exit temperature gradient for a two-
dimensional composite region can be obtained from a
one-dimensional homogenized region. This invariably
has an analytical solution. The effective conductivity
of the composite is the product of the static con-
ductivity k, and the transient conductivity of the
matrix alone (see equation (19¢c)).

(iv) The excess time taken by a cold composite to
become conducting, over and above that for a homo-
geneous region, is independent of the criterion used
to determine it. It is a function of the void fraction ¥
only.
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CONDUCTIVITE EQUIVALENTE D'UN MILIEU HETEROGENE

Résumé—On étudie la conductivité thermique d’un milieu composite formé d’une matrice conductrice et

de fibres isolantes. On s’intéresse a la conductivité transverse équivalente du composite en fonction de la

fraction de volume de fibre. Elle est obtenue en soumettant une région du milieu & des différences de

température soit stables, soit périodique établies. Le systéme d’équations résultant est résolu par une

technique d’éléments finis. Les résultats montrent qu’un milieu composite peut étre homogénéisé en utilisant
des conductivités statistiquement déterminées, méme pour des problémes non permanents.

EFFEKTIVE WARMELEITFAHIGKEIT EINES HETEROGENEN MEDIUMS

Zusammenfassung—Die Wiarmeleitfahigkeit eines zusammengesetzten Mediums aus einer leitenden Matrix

und isolierenden Fasern wird untersucht. Die effektive quergerichtete Leitfahigkeit des Materials wird in

Abhingigkeit vom Volumenanteil der Fasern betrachtet. In dieser Arbeit wird ein inhomogenes Gebeit

sowohl stationdren als auch periodisch stationdren Temperaturdifferenzen unterworfen. Es ergibt sich ein

Satz von Gleichungen, der mit Hilfe der Finite-Elemente-Technik gelést wird. Die Ergebnisse zeigen, dal

ein derartiges zusammengesetztes Medium als homogen betrachtet werden kann, wenn stationir bestimmte
Leitfahigkeiten verwendet werden—selbst bei instationiren Problemen.
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3KBUBAJIEHTHAA NPOBOJUMOCTh HEOOAHOPOJHOM CPEABI

Amsoraums—HccnienyeTcs  TENIONPOBOOHOCTE KOMMO3MTHOM Cpennl, cocToAweil M3 NpOBOISLIEH
MaTPHUB C HeNMpoBOAAWMMH BoNOKHaMH. Oco6oe BHUMaHME yNeIAeTCA IKBHBAIECHTHON MONepedHoH
MPOBOJMMOCTH KOMMO3HTHOH Cpelibl Kak QyHxLAU 06bemHON J0H BoNOKOH. B HacToAwed pabore ona
OfNpESENIAETCA ¢ NOMOIILIO COMAHWA B HEOMHOPOAHOH 06MACTH CTaUMOHAPHOA M CTAUHOHADHO-
neproaMveckofi pasmocteit Temmepatyp. ITosydeHHas cucTema ypaBHEHuil pelacTCsi METOQOM KOHEY-
HBIX 2JIEMEHTOB. PesynbTaThi NOKa3MBAIOT, YTO KOMMO3WUTHAsA Cpella MOXCT DacCMAaTPHBATHLCH Kak
FOMOTCHH3HPOBAHHAA ¢ HCIIOJLIOBAHHECM CTATHCTHYECKH OTIPENC/IEHHBIX BEJHYHH TEIUIONOPOBOIHOCTH
Raxe /U1 HECTRUHOHAPHBIX 32434,



