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Abstract-The thermal conductivity of a composite medium consisting of a conducting matrix and insu- 
lating fibres is studied. The equivalent transverse conductivity of the composite as a function of the fibre 
volume fraction is of interest. This is obtained in the present work by subjecting an inhomogeneous region 
to both steady and steady-periodic temperature differences. The resulting set of equations is solved by a 
finite element technique. Results show that a composite medium can be homogenized using statically 

determined conductivities, even for unsteady problems. 

INTRODUCTION 

INHOM~GENEOUS materials are widely used in engin- 
eering practice. They have found application in struc- 
tural elements due to their high strength-to-weight 
ratio. In several demanding applications such as air- 
craft wings, satellites, cylinder blocks of IC engines, 
etc., the composite structure is required to withstand 
a large thermal loading as well. In some instances, 
the components which make up the composite have 
widely differing strengths as well as thermal con- 
ductivities. Hence, while the strength is improved, the 
equivalent conductivity of the composite deteriorates 
to lower values. For a given heat flux, this can mean 
higher temperatures in the structure and consequently 
a lowering of the strength itself. Determination of the 
effective conductivity of a composite forms the topic 
of this paper. 

A list of formulae useful in calculating thermal con- 
ductivity of a fibre composite has been given by 
Chawla [I]. Baker-Jarvis and Inguva [2] have studied 
steady heat conduction in a region containing 
inclusions, by modifying the Laplace equation to 
account for the microstructure. Hatta and Taya [3] 
have extended Eshelby’s equivalent inclusion method 
in elasticity [4] to determine the effective conductivity 
of a composite with highly conducting short fibres 
randomly oriented within it. Parang et al. [S] have 
studied heat conduction in a region which contains 
coolant tubes normal to it. 

The present work deals with heat conduction in a 
region containing insulating fibres distributed uni- 
formly within it. This configuration models a metal- 
matrix composite with low conductivity fibres inserted 
to improve its strength. It is of interest to determine 
the extent to which the conductivity changes as a 
function of the fibre volume fraction. This study is 
restricted to transverse conductivity alone, since it is 
clear that longitudinal conductivity is well modelled 
by the rule of mixtures [l]. The problem of a com- 

posite undergoing a transient heating process is also 
studied here. There is no reason to expect that the 
static effective conductivities would be applicable for 
the unsteady problem, since the physical process in 
each case is different. 

Results obtained in this study are equally valid for 
the important problem of ground water flow through 
fractured rocks. This extension is possible by ident- 
ifying temperature with pressure, conductivity with 
permeability and thermal capacity with storage 
capacity. The transient conduction problem discussed 
in this paper also has applications in the hydro- 
fracturing of oil-bearing rocks. However, the problem 
formulation in this paper is in terms of temperature 
alone. 

FORMULATION 

The geometry and the coordinate system considered 
in this work are given in Fig. 1. The region is taken as 
square, with a distribution of circular inhomogeneities 
whose conductivity is approximated as zero. The 
matrix conductivity is finite, and the conductivity of 
the composite is normalized with respect to it. The 
effective conductivity of a composite is defined as that 
value for an equivalent homogeneous region, which, 
for a given temperature drop, permits the same 
amount of energy through it. Since the fibres and the 
side walls are taken as insulating surfaces, the energy 
supplied to the composite at x = 0 is equal to the 
energy leaving it, at x = L, under steady conditions. 
The transverse equivalent conductivity is then defined 
as 

k -_Ldr 0- ax,=, (1) 

averaged over y = O-L and normalized with respect 
to the matrix conductivity. For the unsteady problem, 
part of the energy supplied at x = 0 is absorbed by 
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NOMENCLATURE 

A, B, C, D constants of integration in t time 
equation (14) At excess time required for a composite to 

F shape function become conducting, over a 
Fo Fourier number, a/wL* homogeneous region 
i J - 1, imaginary unit T temperature 
k equivalent thermal conductivity of a f complex temperature, T,+iT, 

composite medium in a generalized V volume fraction of inclusions in matrix 
transient problem, normalized by k, .x7 y Cartesian coordinates. 

k, equivalent thermal conductivity of a 
composite medium at steady state, Greek symbols 
normalized by k, ci thermal diffusivity of matrix, k,/(pc,), 

k, thermal conductivity of the 6 thermal boundary-layer thickness on the 
inhomogeneities embedded in the heated edge 
matrix ‘.,i nth eigenvalue in equation (18) 

k,, matrix thermal conductivity (also (:J w/? 

characteristic conductivity) d forcing frequency of thermal loading. 
K,, K2 components of the element stiffness 

matrix arising in the FEM Other symbol 
L edge of the square region, normalized by v gradient operator, (?,‘I%, Z/Zy). 

a typical size of the inclusion 
NOB number of circular voids, or fibres Subscripts 
Re ( ), Im ( ) real and imaginary parts of a i, i ith row, jth column element of matrix 

complex quantity X, y, t. n a/ax, alay, apt, ?;‘Sn, respectively. 

the matrix to raise its temperature. Hence the energy unity when the fibre volume fraction is non-zero and 
leaving the region at x = L is less than the energy for transient problems. Equations (1) and (2) are in 
supplied. In applications such as the cylinder block of dimensionless form. The temperature T is normalized 
an IC engine. it is of interest to determine the time by the imposed temperature difference across the com- 
taken for the region to become conducting, i.e. for the posite region. Factor L arises from the heat flux 
heat flux at x = L to be a significant portion of the expression for a homogeneous region of size L, subject 
heat tlux at x = 0. Hence, for transient problems stud- to a unit temperature drop (= k,!L). Steady heat con- 
ied in this work, we define duction is governed by the Laplace equation 

averaged over y = O-L. Clearly, for steady conduction 
with no inhomogeneities, k, is unity. It is less than 

FIG. 1. Physical domain, coordinate system and boundary 
condition. 

V* T = T,v, + T, = 0 in the matrix 

with the boundary conditions 

(3) 

x = 0, T= 1 

.Y = L, T=O 

y = 0, L, q = 0. (4) 

On all fibre surfaces, T, = 0, where n is the unit out- 
ward drawn normal on these surfaces. This is based 
on the assumption that the fibre conductivity is very 
small compared to the matrix conductivity. The insu- 
lated side wall boundary conditions at y = 0 and L 
may be interpreted as symmetry conditions in a large 
composite, which has a repeating pattern of fibre dis- 
tribution normal to the mean temperature gradient. 

The unsteady problem is governed by 

V*T= ;T, 

the boundary conditions given by equation (4) and 
an initial condition 

t = 0, T = 0 in the matrix. (6) 
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In equation (S), o is the thermal diffusivity in the 
matrix. 

For the transient problem, the application ofequa- 
tion (2) leads to an effective conductivity whose 
dependence on time changes with the choice of the 
initial conditions. To keep the analysis general, the 
temperature difference across the composite is taken 
as 

T(x = 0) - T(x = L) = e’“j’ (7) 

and dynamic steady state is allowed to be reached. 
Then the local temperature is expressed as 

T(x, y, t) = i+e’“’ (gal 

where 

i== T,(x,y,&)+iZ(x,y,o?) (gb) 

and i is the imaginary unit. The determination of T 
is now reduced to the computation of the complex 
temperature i: This process of moving from the time 
domain to the frequency domain can be interpreted 
as a Lapiace transform. Specific solutions of transient 
problems can be obtained by inverting this transform. 
This is usually performed by numerical methods. 

The time taken to reach dynamic steady state is not 
relevant if the analysis given below is employed to 
construct the inverse Laplace transform. However, 
the dynamic steady state may be of direct interest in 
some applications. The time taken to reach this steady 
state depends on 6, the thickness of the thermal 
boundary layer. As shown later in this paper (equa- 
tion (20)), the penetration depth L is related to the 
largest frequency which can cover this distance as 
w m l/L’. Hence large frequencies would cover small 
distances and reach steady state rapidly. 

The real and imaginary components of complex 
temperature T can be interpreted as follows. Since the 
physical temperature T is 

T = Re [Peio’] 

= T, cos wt - Ti sin rot 

and q = 0 at x = 0, T, is the in-phase part of the 
tem~~ture relative to the imposed overall tem- 
perature difference and Ti the out-of-phase part. 

Equations (8), introduced in equation (5) with the 
boundary conditions, give rise to the following 
problem, in terms of T, and 6 : 

02Tr+oc = 0 

V=K-oT, = 0 (9) 

where w = 6/r. The boundary conditions are 

x = 0, T,=l, z=O 

x = L, T, = 0, z = 0 (10) 

ad the normal gradients T,.,, and Ti, = 0 on ail other 
boundaries. Equations (9) are coupled and have to be 
solved simultaneously. The equivalent conductivity is 
a complex quantity defined as 

Its real and imaginary parts must both he fully deter- 
mined to calculate the transient temperature dis- 
tribution through a Laplace inversion process. 

The void fraction (i.e. the fraction of fibres in a 
composite, or the percentage contact area in a rock 
fracture) ranges from 0 to 20% in this work. 

METHOD OF SOLUTION 

Equations (3) and (4) and (9) and (10) have been 
solved by a Gale&in finite element method using six- 
noded isoparametric elements [6]. At each node, we 
solve for both T, and T. The circular shape of the 
inhomogeneities is exactly represented in the calcu- 
lation. The element matrix structure here is of the 
form 

K,l M21 Tr 

-w[K,] [kc,] K =O I[ 1 (12) 
where Ku1 = j (F&+ F&y) dfl, K,,i =: j F,F dil and 
i,j = l-6. flu,] arises from Galerkin integration of the 
terms V2T, and V’Ti in equation (9). [KJ arises from 
the coupling terms ri and T, in equation (9). Matrix 
inversion is accomplished by a sparse matrix solver 
[q. While solving equation (9>, the matrix formed by 
the FEM becomes increasingly unsymmetric for large 
values of w. It is also ill conditioned due to the large 
off-diagonal terms. Fortunately, lk(o)] --, 0 as w + 
00, and the calculation can he terminated at a finite 
forcing frequency. For large w, the solution of equa- 
tion (9) is T, = F = 0 in the bulk of the solid. The 
mean temperature field then fails to satisfy the bound- 
ary condition at x = 0. Matrix il!-conditioning signals 
this change in physical phenomena in the region being 
studied. 

The finite element code has been well tested for both 
the steady and steady-~~odic problems. Anaiytical 
solutions are possible for a homogeneous material. 
The computer program has been tested by repro- 
ducing results given by Ozisik [S] for a steady tem- 
perature difference, and a variety of side wall 
conditions. For the time periodic problem, equation 
(9) can be combined to form 

V2V2T,+02T, = 0 (13a) 

with the boundary conditions 

x = 0, T, = 1, (T,), = 0 

x = L, T, = 0, (T,), = 0. W) 

This system of equations, in one dimension, has an 
analytical solution 

T, = A e’” sin cx+ B eecx sin cx 

+ C ecX cos cx+ D e-” cos cx (14) 

where A, B, C and D are integration constants to be 
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obtained from equation (13b), and c = J(o/Z). The 
results of the finite element code match this solution 
within 1%. 

The number of elements is so chosen that each fibre 
surface is represented by 16 nodes. This ensures that 
the energy balance between inlet and exit (x = 0 and 
L) is within 0.01% for the steady problem. The same 
discretization has also been used for the unsteady 
problem. 

A region size of L = 6 has been used in the present 
work. The fibre diameter is of order unity. The effec- 
tive conductivity of the composite under static thermal 
loading conditions is insensitive to the choice of L, 
and depends primarily on the fibre volume fraction. 
This is discussed further in the next section. Under 
dynamic loading conditions, the conductivity is a 
strong function of L. This is because, at each value of 
w, a thermal boundary-layer is formed, whose thick- 
ness is 6(w). If 6 < L, the conductivity, defined in this 
study at the energy exit plane, is zero. It becomes non- 
zero only for values of 6 > L. The frequency cor- 
responding to S = L is hence a critical value, in the 
sense that w < w,, makes the composite conducting, 
and w > W, makes it insulating. This observation has 
strong implications in the cooling of IC engines. Sup- 
pose the thickness of the cylinder block is greater than 
6(w), where o is now the frequency of combustion. 
Then, no amount of cooling from outside would be 
of use, since the block is an insulator at that frequency. 

Even though k is a function of both w and L, 
dimensional analysis shows that it can be made a 
unique function of the Fourier number, Fo = l/ 
wL2 = r/rSL*. Hence, the results presented here for 
L = 6 can be extended to any combination of L and 
w, by keeping Fo invariant. For a composite, k is also 
a function of geometry and the scaling (i.e. wL2) is 
not necessarily valid. However, extensive numerical 
experiments have confirmed that k is a unique func- 
tion of Fo, and it is sufficient to perform calculations 
for a single value of L. It will be shown in the next 
section (Fig. 5) that for both the matrix and the 
composite, k/k,, is a unique function of the Fourier 
number 

k 

G = G(Fo). 
(15) 

Here k, is the equivalent conductivity determined 
under static conditions. 

RESULTS 

Figure 2 shows a plot of the static equivalent con- 
ductivity k. as a function of the fibre volume fraction. 
Since the fibres are taken as nonconducting, they may 
as well be thought of as voids distributed in the matrix. 
The FEM result obtained in this study has been com- 
pared to the rule of mixtures 

k,, = Vk,+(l-V)k, (16) 

0.d I I I I I 
8 16 

% Void 

FIG. 2. Plot of static equivalent conductivity as a function 
of void fraction. 

where V is the void fraction and subscripts m and f 
refer to matrix and fibre, respectively. In this work, 
kc = 0. FEM results have also been compared to the 
empirical correlation for transverse conductivity 

11991: 

k, = (1 -,,‘V)k,+ 
k,v’ P 

. (17) 

Equation (16) is appropriate for longitudinal con- 
ductivity, where the fibres are aligned with the direc- 
tion of the mean temperature gradient. It overpredicts 
transverse conductivity, and is generally not valid for 
this problem. Figure 2 also shows that the correlation 
given in equation (17) underpredicts conductivity with 
respect to the numerically computed values. In par- 
ticular, it is very inaccurate for low void fractions, 
since it shows a very sharp drop in conductivity for 
V < 5%. Its validity for a large void fraction (greater 
than 20%) has not been tested against the FEM. This 
is because the computer memory required to solve 
such problems is found to be excessive. The best line 
fit through the numerical data is found to be 

k. = 1-1.63V (18) 

for 0 < V < 0.2. It predicts zero conductivity for 
V 3 0.61. For such a large proportion of inhomo- 
geneity, it is inappropriate to use a continuum model 
to determine equivalent properties. The behavior of 
the composite would be a strong function of the pat- 
tern of distribution of the voids (or fibres, or contact 
areas, as the case may be). The value of k may fluctuate 
between zero and finite values. The global response of 
the composite medium can then be characterized only 
as a statistical average. This is an entirely different 
problem and is not addressed here. 

The effective conductivity of the composite is a 
function of the pattern of distribution of voids in the 
matrix. Figure 3 shows the variation in k,, as a function 
of this pattern, for fixed values of void percentage. 
The patterns used are summarized in Table 1. In Fig. 
3, NOB refers to the number of circular voids in the 
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0 NOB* 3, 14.1 X Void 

0.9 - l NOB= 2. 17.5 X Void 

k0 0 0 0 0 
. 

0.7 - . . - 
. 

,5. 3 4 

Pattern 

FIG. 3. Plot of static equivalent conductivity as a function 
of pattern of distribution of voids. 

region of interest. The standard deviation of k,, from 
its mean value is within 4.3% for both void fractions 
shown. This mean value has been plotted in Fig. 2 as 
representative of equivalent conductivity for a given 
void fraction. The equivalent conductivity is seen to 
be only weakly dependent on the pattern of dis- 
tribution of the inhomogeneities, and is primarily a 
function of their proportion in the conducting zone. 

Figure 4 shows a plot of the static equivalent con- 
ductivity as a function of fineness of distribution of 
the voids, for a given total void fraction (3: 19% in 
this figure). For a given size of void, the two patterns 
which produce extreme conductivities are-also dis- 
played in the figure. The scatter is seen to reduce as 
the size of the void reduces and its number increases 
to keep the void fraction constant. Hence, it may be 
concluded that both a fine distribution of inhomo- 
geneities and a coarse one will give rise to nearly the 
same conductivities. 

Figure 5 is a plot of the real part of dynamic equi- 
valent conductivity as a function of forcing frequency 
w. The conductivity is normalized by its static value 
k,,. Curves for both void fractions of 0 and 20% have 
been plotted. The negative values of Re [k] for a 
certain range of frequencies should come as no 
surprise, because k is defined as the dimensionless 
temperature gradient at the exit plane. Since the inlet 
temperature (at x = 0) fluctuates between + 1 and 
- 1, and the exit temperature is zero, this gradient is 
allowed to change sign. The curve for a void fraction 
of 0% can also be obtained analytically from equation 

FIG. 4. Plot of static equivalent conductivity as a function 
of fineness of distribution of voids. 

(14). The comparison between the FEM result shown 
in Fig. 5 and that obtained from equation (14) is 
found to be quite good. 

With k normalized by the static conductivity k,,, it 
is seen in Fig. 5 that the curves Re [k/k,,] -f,(w) for 
each void fraction (0 and 20%) nearly overlap each 
other. It will be assumed here that these curves are in 
fact identical. Figure 6 shows that the plot of 
Im [k/k01 =f@) is also nearly unique, independent of 
the void fraction. Plots of Re [k] and Im [Jr] for other 
void fractions between 0 and 20% confirm this trend. 
Since the steady-periodic problem is a building block 
for any transient problem (and hence is a generalized 
transient problem, away from initial conditions), the 
following conclusion can be arrived at. The exit tem- 
perature gradient in a general two-dimensional tran- 
sient heat conduction problem with inhomogeneities 
can be obtained from a one-dimensional transient 
problem by multiplying the frequency-dependent 
matrix conductivity by the static equivalent con- 
ductivity k,,. The exception to this rule occurs when a 
homogeneous region has a two-dimensional tem- 
perature field due to boundary conditions. This case 
is not studied here. 

The implication of the observation given above is 
the following. To compute the quantity ~W/dx(, _ L at 
various instants of time, and to determine the time 
taken by a composite region to become conducting, 
the full problem T,,+ T, = l/0, can be simplified to 
T,= I/aT,. The one-dimensional transient problem 
has an analytical solution for the following choice of 
initial and boundary conditions : 

Table 1. Distribution of centres of voids in matrix used in Fig. 3 

NOB-2 NOB = 3 
Radius = 1 Radius = 0.75 

Pattern x y x y X Y x Y x Y 

1 3.0 1.5 3.0 4.5 1.5 1.5 1.5 4.5 4.5 3.0 

2 1.5 3.0 4.5 3.0 :d 
30 
4’5 

4.5 1.5 4.5 4.5 
3 1.5 4.5 4.5 1.5 

3:o 1:s 
is 
1:s ::: 

45 
4 1.5 1.5 4.5 4.5 415 ::: 



176-i K. MURALIDHAK 

Re 

- Void 0 X 

-___ Void 20% 

L=6 

FIG. 5. Real part of dynamic equivalent conductivity nor- 
malized by kO, plotted as a function of the forcing frequency. 

x=0 T=l, t>o 

x=L T=O, t>O 

t=O T=O, O,<x<L. 

This solution is 

T(x, t) = 

where 1, = m/L. The dimensionless temperature 
gradient at the exit plane (X = L) of the homo- 
geneous region is 

k(f) = - 1+2 f (- I)“+ ’ e-4’. (19b) 
n= I 

For a composite region, generalized transient analysis 
shows that 

44 -= -I+2 f (-l)n+‘e-“il’. 
kc, 

(19c) 
“= I 

The time taken by a region with a distribution of voids 
to become conducting to various extents (So/,, 25%, 
etc.) can be calculated from equation (19~). 

0.6 

-1m -L 
[I ko 

0.2 

-0.2 

I 

- Void 0 % 

____ Void 20 Y. 

L=6 

I I - 

3 

c&Y 

I I 

FIG. 6. Imaginary part of dynamic equivalent conductivity FIG. 7. Plot of time taken for a composite to become con- 
normalized by k,, plotted as a function of forcing frequency. ducting as a function of the void fraction. 

From Figs. 5 and 6. it is clear that the dynamic 
conductivity is reduced to a small magnitude for 
w > 3, when L = 6. This corresponds to a Fourier 
number of 

2 I I 
Fo=~=~=~. 

Hence, the cut-off frequency for any other region size, 
homogeneous or otherwise, can be calculated from 

108X 
WC,,.“, = L’, 

This relationship has application in the design of cyl- 
inder blocks for IC engines, which are subject to ther- 
mal cyclic loading. For a loading frequency greater 
than the cut-off value given by equation (20), the mean 
energy conducted through the material drops to zero. 
The cylinder block will then have to be cooled by 
having coolant channels in its interior. 

Figure 7 is a plot of the dimensionless time taken 
by a composite region to become conducting as a 
function of the void percentage, obtained from equa- 
tion (19). This time is independent of the length L, 

being defined as m*t/L’, where r is the matrix diffu- 
sivity and t is the real time. The numbers shown in 
the graph (5%, 25% etc.) refer to the criteria used to 
determine whether the piece is conducting or not. For 
example, with a 5% criterion, this time is what is 
required for k/k,, to be just equal to 0.05, starting from 
a zero value. For a 5% criterion, a composite region 
with 20% inhomogeneities takes 42% longer to 
become conducting, relative to a uniform matrix 
alone. This figure is 42% for the 95% criterion as well. 
Hence, the excess time taken by a material to become 
conducting is independent of the criterion used and is 
a unique function of the void fraction. This obser- 
vation has been tested for all void percentages, 
between 0 and 20%, and has been found to be valid. 
The plot of this excess time At versus the void fraction 
V is shown in Fig. 8. 

5- 

I 1 
0 

0 95% 
0 

0 
3 

t, 

50% 
2- . - 

. . 
1 

. 23% 

o o 
0 

Is 0 
. . . 

I . 5 Y. 

I I 
0 0 16 

% Void 
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% Void 

FIG. 8. Plot of excess time taken by a composite to become 
conducting over a homogeneous region, as a function of the 

void fraction. 

CONCLUSIONS 

The following are the conclusions arrived at in this 
work. 

1. The static equivalent conductivity of a composite 
region is primarily a function of the percentage of 
inhomogeneities. It depends weakly on the pattern of 
distribution and fineness of their size. Based on Fig. 
2, the best fit line through the numerical data is 

kO= l-1.63V, 0~ VdO.2. 

2. The real and imaginary parts of the equivalent 
conductivity, calculated at the exit plane of a square 
composite region of length L, have the following prop- 
erties. 

(i) Re [k/k,] and Im [k/k01 have a unique value 
corresponding to the dimensionless parameter, r/oL2. 

(ii) They reduce to zero for a/WI.* < l/108. 
(iii) In view of conclusion 2(i), the calculation of 

the transient exit temperature gradient for a two- 
dimensional composite region can be obtained from a 
one-dimensional homogenized region. This invariably 
has an analytical solution. The effective conductivity 
of the composite is the product of the static con- 
ductivity k, and the transient conductivity of the 
matrix alone (see equation (19c)). 

(iv) The excess time taken by a cold composite to 
become conducting, over and above that for a homo- 
geneous region, is independent of the criterion used 
to determine it. It is a function of the void fraction V 

only. 
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CONDUCTIVITE EQUIVALENTE DUN MILIEU HETEROGENE 

R&m&--On ttudie la conductivite thermique dun milieu composite forme dune matrice conductrice et 
de fibres isolantes. On s’intbresse a la conductivitt transverse equivalente du composite en fonction de la 
fraction de volume de fibre. Elle est obtenue en soumettant une region du milieu a des differences de 
temperature soit stables, soit p&iodique btablies. Le systeme d’equations t&&ant est resolu par une 
technique d’tlements finis. Les resultats montrent qu’un milieu composite peut Btre homogentif en utilisant 

des conductivitis statistiquement dtterminQs, meme pour des probltmes non permanents. 

EFFEKTIVE WARMELEITFAHIGKEIT EINES HETEROGENEN MEDIUMS 

Zusammenfaasung-Die WItmeleitTahigkeit eines zusammengesetzten Mediums aus einet leitenden Matrix 
und isolierenden Fasem wird untersucht. Die effektive quergerichtete Leitfahigkeit des Materials wird in 
Abhlngigkeit vom Volumenanteil der Fasem lxtrachtet. In dieser Arbeit wird ein inhomogenes Gebeit 
sowohl stationlren als such period&h stationiiren Temperaturdifferenzen unterwotfen. Es eigibt sich ein 
Satz von Gleichungen, der mit Hilfe det Finite-Elemente-Technik aelost witd. Die Eraebnisse zeieen. da8 
ein derartiges zusa&rnengesetztes Medium als homogen betrachtet ierden kann, wenn;tationHr beitimmte 

LeitEihigkeiten verwendet werden--selbst bei instationgren Problemen. 
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3KBMBAJIEHTHAfl IWOBO~MMOCTb HEOfiHOPOflHOft CPEAbI 

klhITWlUl---MCCJIeLIyeTc~ TeMOll~BOJlHocTb KOMllO3HTHO~ Cpem, COC’rOJtI&i H3 IIpOBOsnrueii 

MaTpww c HenpoBoanuulwc 8onomam. Cko6oe BHw.fawe ynennercn 3KBnsane~Hol nonepewoii 

npoww~oc~~ KOM~O~HTHO~~~~~JI~I rar(bymmio6se~~0i3nom BO~OKOH. B xacronueitpa6oTeoHa 
onpenenwrca c no~ouxbto co3nattHn B Heoniioporurol o6nacrH crawoiiapHoii H crauiioHapHo- 

nepHonwreceok pa3aocrel TeMnepaTyp. IIonyneman cwreMa ypaeHeHHii pewaercn MeTonoM KoHe9- 

HbIX 3JIeMeIiTOB. k3yJlbTaThl nOLaSlBalOT, 'IT0 KOMn03HTHal CpeJIa MOXeT paCCMaTpHBaT?LK KU 

roMoreiiH3HpoBaHHaK c ncnonb3oBaAHeM cTaTHcrwecKsi 0npeneneHwx nenmm TennonopoBomrocM 


